

SOLUTION: HW Pre Calculus 12: Section 1.2 Horizontal and Vertical Translations

1. Suppose you are given a function $f(x) = 3(x-4)^2 + 5$ and you replace the variable "x" in the equation with $x+3$, then answer the following:

i) What does the equation become after the transformation?

When we replace "x" with "x+3", the equation will become:

$$f(x) = 3((x+3)-4)^2 + 5 \text{ and then simplify the equation:}$$

$$f(x) = 3(x-1)^2 + 5$$

ii) Which way if the graph shifted and by how much?

The graph will be shifted 3 units to the left

iii) Where is the vertex of the parabola after the transformation?

The original vertex of the parabola is (4,5). If we shift the parabola 3 units to the left, all the x-coordinates will subtract 3. So the new vertex will be (1,5)

2. Suppose you are given a function $f(x) = 2x^3 - 8x^2 + 5$ and you replace the variable "x" in the equation with $x-2$ and the "y" variable with $y+10$, then answer the following:

i) What does the equation become after the transformations? Simplify your equation & isolate the "Y" variable.

$$(y+10) = 2(x-2)^3 - 8(x-2)^2 + 5 .$$

The "y" variable becomes "y+10" and the "x" variable becomes "x-2". Now simplify the equation:

$$y = 2(x^3 - 2x^2 + 4x - 8) - 8(x^2 - 4x + 4) - 5$$

$$y = 2x^3 - 4x^2 + 4x - 16 - 8x^2 + 32x - 32 - 5$$

$$y = 2x^3 - 12x^2 + 36x - 53$$

ii) Which way if the graph shifted and by how much?

The graph is shifted 10 units DOWN and 2 units to the RIGHT

3. Indicate the transformation from the function on the left to the function on the right:

a) $y = x^2 + 3x + 4 \rightarrow y = (x-5)^2 + 3(x-5) + 4$

The "x" variable is replaced with "x-5", this will shift the function 5 units to the RIGHT!!

b) $y = x^2 + 4x + 5 \rightarrow y = x^2 + 4x + 11$

The left side of the equation is increased by 6. If we move this value to the left, it looks like this:

$$y = x^2 + 4x + 5 \rightarrow y - 6 = x^2 + 4x + 5$$

So our transformation is "y" is transformed to "y-6", this will shift the function 6 units UP!!

c) $y = \sqrt{3x - 4} \rightarrow y = \sqrt{3x - 4} + 10$

The value of 10 is added "OUTSIDE" of the function, therefore, it is a vertical displacement. Again, move the 10 to the left and we have:

$$y = \sqrt{3x - 4} \rightarrow y - 10 = \sqrt{3x - 4} . \text{ The function is shifted 10 units UP!!}$$

d) $y = \sqrt{3x - 4} \rightarrow y = \sqrt{3x - 7}$

The value of 7 is increased inside the function, so that means it is a horizontal displacement. However, we can't have a transformation like this: $3x - 4 \rightarrow 3x - 7$, you can't do this b/c there's a coefficient with the "x".

Therefore, if there's a coefficient, FACTOR it OUT FIRST!!!!

$$y = \sqrt{3\left(x - \frac{4}{3}\right)} \rightarrow y = \sqrt{3\left(x - \frac{7}{3}\right)} \rightarrow y = \sqrt{3\left(x - \frac{3}{3} - \frac{4}{3}\right)} . \text{ From here we can see that "x" is transformed to}$$

" $x - 3/3$ ", which is " $x - 1$ ". Therefore, the function is shifted 1 unit to the RIGHT!!

e) $y = |x| \rightarrow y = |x - 2| + 4$

"x" \rightarrow "x - 2" : Which is a Horizontal shift of 2 units to the RIGHT

"y" \rightarrow "y + 4" : Which is a vertical shift of 4 units UP

f) $y = \sqrt{x} \rightarrow y = \sqrt{x+3} - 7$

"x" \rightarrow "x+3" : Horizontal SHIFT 3 UNITS LEFT!!

"y" \rightarrow "y+7" : Vertical SHIFT of 7 UNITS DOWN!!

g) $y = 3x + 2 \rightarrow y = 3x + 8$

This one can be perceived as either a Horizontal Shift ORRR a VERTICAL shift. The vertical is EASIER....

$$y - 2 = 3x \rightarrow y - 8 = 3x : \text{This makes it a Vertical shift of 6 unit UP!!}$$

$$y = 3(x + k) + 2 \rightarrow y = 3x + 8$$

$$3x + 3k + 2 = 3x + 8$$

$$3k + 2 = 8 \quad : \text{This is a horizontal shift of 2 units to the LEFT!!}$$

$$3k = 6$$

$$k = 2$$

In general for lines, there could be infinite answers because any point on a line can align onto any other point on a linear function. Just as long as the lines overlap, your answer can be anything. However, this only works for linear functions!!!

h) $y = x^2 \rightarrow y = x^2 + 6x + 12$

For this question, complete the square for the right side. If you don't know how to complete the square, go review your PC11 notes.

$$y = x^2 \rightarrow y = x^2 + 6x + 12$$

$$y = x^2 + 6x + 9 - 9 + 12$$

$$y = (x^2 + 6x + 9) - 9 + 12$$

$$y = (x + 3)^2 + 3$$

So we have: "x" \rightarrow "x+3": 3 units LEFT and "y" \rightarrow "y-3": 3 units UP!!

i) $y = \frac{1}{x} \rightarrow y = \frac{1}{x+5} + 3$

"x" \rightarrow "x+5": 5 units LEFT

"y" \rightarrow "y-3": 3 units UP!!

4. Given each equation for $y = f(x)$, indicate the new equation after each translation:

a. $f(x) = 3x - 5$ A horizontal shift of 3 units right and 2 units up

For these types of questions, write the transformations out first!!

ie: $x \rightarrow "x-3"$ so our equation becomes: $y = 3(x-3) - 5$

$y \rightarrow "y-2"$: the equation is now: $y - 2 = 3(x-3) - 5$

now take the time to simplify your equation: $y - 2 = 3x - 9 - 5$
 $y = 3x - 12$

b. $f(x) = 2x^2 + 3$ A horizontal shift of 5 units left and 8 units up

First transformation: "x" \rightarrow "x+5" $f(x) = 2(x+5)^2 + 3$

2nd transformation: "y" \rightarrow "y-8" $y - 8 = 2(x+5)^2 + 3$

$$y = 2(x+5)^2 + 11$$

c. $f(x) = \sqrt{x-5} + 1$ A horizontal shift of 7 units right and 6 units down

$$f(x) + 6 = \sqrt{(x-7)-5} + 1$$

$$y = \sqrt{x-12} - 5$$

d. $f(x) = 3^x + 2$ A horizontal shift of 11 units left and 2 units down

$$f(x) + 2 = 3^{x+11} + 2$$

$$y = 3^{x+11}$$

e. $x^2 + y^2 = 16$ A horizontal shift of 4 units right and 8 units up

$$x^2 + y^2 = 16$$

$$(x-4)^2 + (y-8)^2 = 16$$

f) $f(x) = \frac{1}{x-3}$ A horizontal shift of 2 units left and 6 units down

$$y + 6 = \frac{1}{(x+2)-3}$$

$$y = \frac{1}{x-1} - 6$$

g) $f(x) = x^3 + 2x^2$ A horizontal shift of 5 units right and 11 units down

$$y + 11 = (x-5)^3 + 2(x-5)^2$$
 Take the time to expand this....

5. Given the graph of $y = f(x)$, draw the resulting image after each transformation:

When graphing transformations, take several key points on the original graph. For instance, in the first image, the key points are $(-6, -6)$, $(-2, 4)$, and $(5, 4)$.

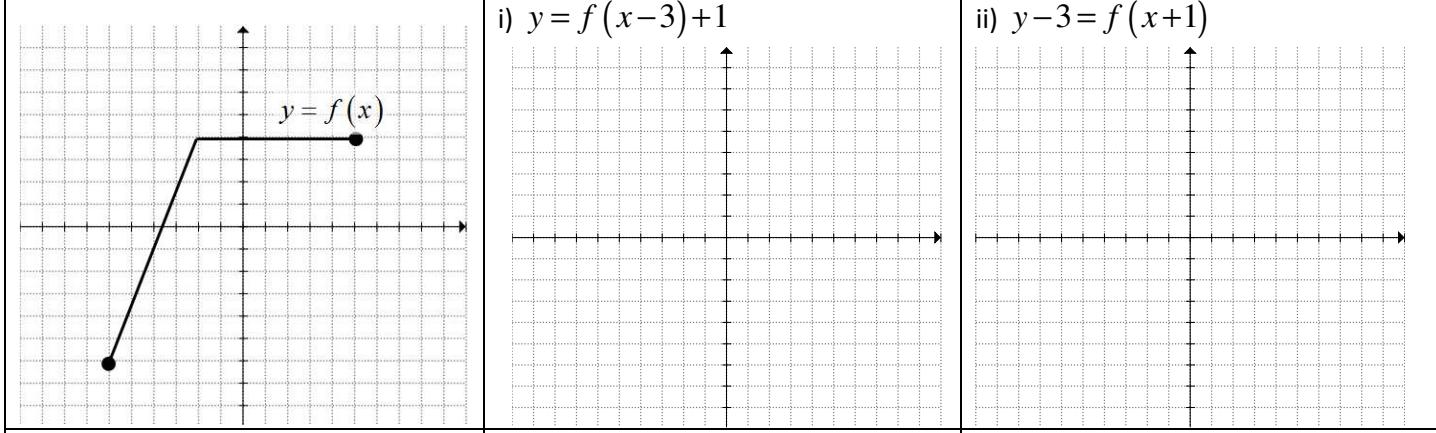
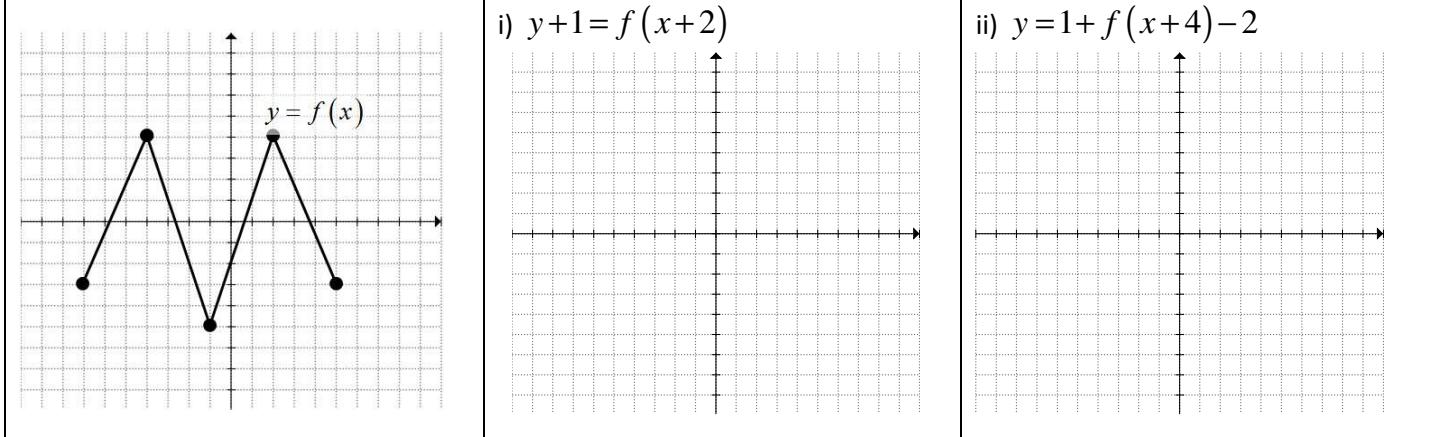
Next we indicate the shifts involved.

i) 3 units to the right and 1 unit UP! All the "x" coordinates will increase by 3 and all the "y" coordinates will increase by 1.

So that means the new points will be: $(-3, -5)$, $(1, 5)$ and $(8, 5)$.

ii) The second function shifts the graph 3 units UP and 1 unit LEFT. The "X" coordinates will decrease by 1 and the "Y" coordinates will increase by 3.

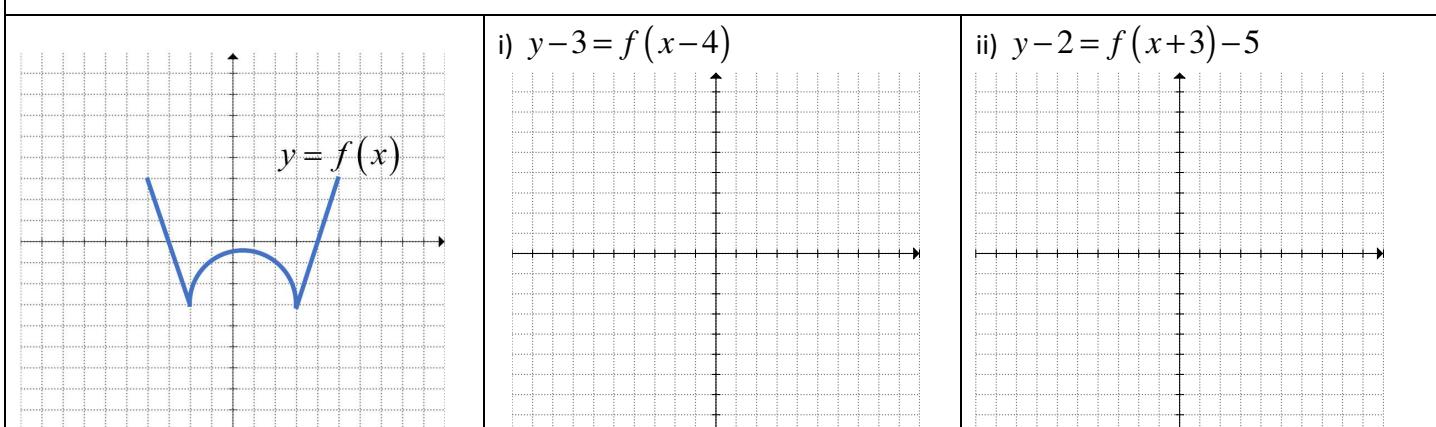
The new points will be: $(-7, -3)$, $(-3, 7)$, and $(4, 7)$.



Again, the first step should selecting the key points on the graph. We have: $(-7, -3), (-4, 4), (-1, -5), (2, 4)$ and $(5, -3)$.

i) The first transformation is 1 unit DOWN and 2 units LEFT. So all the "x" coordinates will decrease by 2 and all the "Y" coordinates will decrease by 1. The new coordinates will be: $(-9, -4), (-6, 3), (-3, -6), (0, 3)$ and $(3, -4)$. Graph these points.....

ii) The second transformation is: 1 units DOWN and 4 units left. "X" coordinates subtract 1 and "y" coordinates subtract 4. The new points are: $(-8, -7), (-5, 0), (-2, -9), (1, 0)$ $(4, -7)$.



6. Given that the coordinates of $(2, 3)$ is transformed to $(8, 4)$ from $y = f(x) \rightarrow y = f(x-a)+b$, what is the value of $a + b$?

To go from (2,3) to (8,4) we shift 6 units RIGHT and 1 units UP.

The value of "a" will be 6 and the value of "b" will be 1.

$$a+b = 7$$

7. Given that the coordinates (a,b) are on the function $y = f(x)$, find the new coordinates for each function after the transformation:

i) $y = f(x-3)+2$	ii) $y-5 = f(x+1)+2$
iii) $y = f(x+7)-11$	iv) $y-4 = f(x-5)+3$

8. Suppose the point (a,b) is on the function from the left. What will the point become after the transformation shown from the function on the right? Indicate all possible answers:

a) $y = |3x-2| \rightarrow f(x) = |3x+12|+4$

When there is a coefficient in front of the "x", factor it out first.

YOU can't transform $3x-2$ to $3x+12$ directly. Instead, factor and then deal with the transformation

$$y = \left| 3\left(x - \frac{2}{3}\right) \right| \rightarrow f(x) = \left| 3(x+4) \right| + 4$$

2nd Method

$$3(x+k)-2 = 3x+12$$

$$y = \left| 3\left(x - \frac{2}{3}\right) \right| \rightarrow f(x) = \left| 3\left(x + \frac{14}{3} - \frac{2}{3}\right) \right| + 4$$

$$3x+3k-2 = 3x+12$$

$$x \rightarrow x + \frac{14}{3}$$

$$3k-2 = 12$$

$$y \rightarrow y - 4$$

$$3k = 14$$

$$k = \frac{14}{3} \quad 14/3 \text{ units to the left!!}$$

14/3 units to the right and 4 units UP!!

b) $y = \frac{4}{3}x+11 \rightarrow f(x) = \frac{4x+10}{3}$

THERE ARE TWO WAYS TO DO THIS QUESTION!!!

First method: treat it as a vertical displacement

For this question, rewrite the right side so that you split the two terms up.

$$\begin{aligned}y &= \frac{4}{3}x + 11 \rightarrow y = \frac{4x}{3} + \frac{10}{3} \\&\rightarrow y = \frac{4x}{3} + 11 + \frac{10}{3} - 11 \\&\rightarrow y = \frac{4x}{3} + 11 - \frac{23}{3}\end{aligned}$$

So the transformation is vertical. "y" \rightarrow "y+23/3". The graph is shifted 23/3 units DOWN!!!

2nd method: Use $x \rightarrow x+k$, where you treat it as a horizontal translation

$$y = \frac{4}{3}(x+k) + 11 = \frac{4x}{3} + \frac{10}{3}$$

$$\frac{4x}{3} + \frac{4k}{3} + 11 = \frac{4x}{3} + \frac{10}{3}$$

$$\frac{4k}{3} + 11 = \frac{10}{3}$$

$$4k + 33 = 10$$

$$4k = 23$$

$$k = \frac{23}{4} \text{ units LEFT}$$

c) $y = 2^x + 1 \rightarrow f(x) = 4(2^x) - 3$

Turn every value into a power of 2, then combine exponents:

$$y = 2^x + 1 \rightarrow y = 2^2(2^x) - 3$$

$$y = 2^x + 1 \rightarrow y = 2^{x+2} - 3$$

If you rewrite it this way, you can see that the "x" variable is changed to x+2, which means it's a HS of 2 LEFT

d) $y = \frac{1}{x} \rightarrow f(x) = -1 - x - x^2 - x^3 + \dots \quad \{0 < x < 1\}$

HINT: This is a geometric series - $a + ar + ar^2 + ar^3 + \dots = \frac{a}{1-r} \quad \{0 < r < 1\}$

9. The parabola $y = x^2 - 4x + 3$ is translated 5 units right. In this new position, the equation of the parabola is $y = x^2 - 14x + d$. What is the value of "d"?